Electric Power Grids & Severe Space Weather: Preparing US Power Grids and Understanding the Societal and Economic Impacts jkappenma@aol.com 218-727-2666 ## A Review of Power Grid Vulnerability to Solar Activity & Geomagnetic Storms A rapidly changing geomagnetic field over large regions will induce Geomagnetically-Induced Currents (i.e. GIC a quasi-DC current) to flow in the continental interconnected Electric Power Grids > Geomagnetic Storms have Continent-Wide & Planetary Footprints Storm causes Geomagnetic Field Disturbances from Electrojet Current that couple to Power Systems ### **Great Geomagnetic Storms & EMP** US Electric Grid Vulnerability -Trends and Preparedness #### Threat New Awareness that Geomagnetic Storm Severity is 4 to 10 Times larger than previously understood – Past Metrics did not measure risks correctly for power industry #### Vulnerability Power Grid infrastructures have experienced a "Design Creep" over past few decades that have unknowingly escalated vulnerability to these threats – No Design Code Yet Exists #### Consequences - Power Supply is an essential scaffolding of modern society (40% of US Energy Supply) - All other Critical infrastructures will also collapse with long-term loss of Electricity – Society "Interdependency Creep" - Risk Events have catastrophic potential, Immediate serious impacts to Society, Millions of Lives At-Risk and impact to future generations of society #### **Storm Environments & Great Geomagnetic Storms** March 1989 Superstorm & May 1921 Storm Comparisons Focus has largely been on Electrojet Intensifications, Other Processes are also Important At High, Low and Mid Latitude Locations around the World ### **Great Geomagnetic Storms** March 1989 Superstorm & May 1921 Storm Comparisons May 1921 Storm and 1859 Storm were not only more Intense but had larger Geographic Laydown Intensity of Field, Modeling of GIC Flows #### March 13, 1989 – 4 Minutes of a Geomagnetic Storm Intensity of Field, Modeling of GIC Flows ### March 13, 1989 - Superstorm @ 4:40 PM (21:40 UT) Time 4:40-5:30 PM EST (21:40-22:30 UT) Intensity of Field, Modeling of GIC Flows ## Geo-Electric Field & Power Grids Intensity of Field, Modeling of GIC Flows Intensity of Field, Modeling of GIC Flows Data, GIC Measurements and Reports of Failures from these & other smaller storms also allow linear extrapolations to be made to higher storm intensities and which also confirm models, potential for large impacts Possible Region of Grid Collapse #### **Severe Geomagnetic Storm Disturbance Scenario** Power System Disturbance and Outage Scenario of Unprecedented Scale #### Geomagnetic Storms & Transformer Failures – Historic Trends #### **DC** Injection Tests on 500kV Transformers #### **Transformer Damage – Heating due to GIC** #### **Transformer Simulations Provide a View into Problems in Non-Core Regions** Flux Distribution in Transformer over a 60 Hz Cycle Source – P. Price - IEEE #### **Price – Transformer GIC Limits** | Transformer Core Type,
three phase with separate
delta and steel tank | GIC Currrent amperes/phase. | | | | | |---|-----------------------------|------|------|------|------| | Corta and steel tains | 5 | 10 | 25 | 50 | 100 | | 3 limb no core bolts. | Non | Lo. | Lo. | Lo. | Pos. | | 3 Limb + core bolts in limbs & yokes. | Lo. | Lo. | Lo. | Lo. | Pos. | | 5 limb no core bolts in yokes
or limbs. | Lo. | Lo. | Lo. | Pos. | Hi. | | 5 limb + core bolts in yokes &
limbs. | Lo. | Pos. | Pos. | Pos. | Hi. | | 3 off bank single phase, no core bolts yokes or limbs. | Lo. | Lo. | Pos. | Pos. | Hi | | 3 off bank single phase + core
bolts in main and return limbs. | Lo. | Pos. | Hi. | Hi. | Hi. | Typical of EHV Transformer Design in US #### **Location of At-Risk Transformers** 4800 nT/min at 50° (GIC > 90 Amps/phase) ## Generators At-Risk (50 A/ph or greater) 4800 nT/min Threat Level #### **IEC Equipment Immunity Levels and Test Methods** Notice Even Harmonics are Much Lower than Odd Harmonics #### Case Studies - Fuse Operation on 60kVAR power factor correction capacitor bank #### Case Studies - Fuse Operation on 60kVAR power factor correction capacitor bank #### **Individual Harmonics & Additional Zero Crossings** #### **Harmonic Thresholds for Additional Zero Crossings** #### **Individual Harmonics & Additional Zero Crossings** ## Comparison of Quebec Current Harmonics and Zero Crossing Thresholds Test - sum of multiple harmonics at optimal phase angles when $V_1 < \Sigma V_h * h$. V1 equals 277V-rms and the sum of harmonics times their order equal 319V-rms | Harmo | onic | Magnitude | Phase Angle | | |-------|------|-----------|-------------|--| | | 1 | 277 | 0 | | | | 3 | 27.7 | 180 | | | | 4 | 41.55 | 0 | | | | 5 | 13.85 | 180 | | Time (ms) #### Case 1: 3rd, 4th & 5th Harmonics Present $V_1 < \Sigma V_h * h and V_1 = 277V-rms$ $$\Sigma V_h * h = (27.7 * 3) + (41.55 * 4) + (13.85 * 5) = 319V-rms$$ Threshold of causing additional zero crossing. Time (ms) | Harmonic | Magnitude | Phase Angle | |----------|-----------|-------------| | 1 | 277 | 0 | | 6 | 10 | 180 | | 7 | 15 | 0 | | 8 | 14 | 180 | -400 -500 #### Decreased 6th by 10 V-rms and 8th order by 1 V-rms $$V_1 > \Sigma V_h * h and V_1 = 277V$$ $$\Sigma V_h * h = (10 * 6) + (15 * 7) + (14 * 8) = 277 V-rms$$